Class HoltLinearModel

java.lang.Object
org.elasticsearch.search.aggregations.pipeline.MovAvgModel
org.elasticsearch.search.aggregations.pipeline.HoltLinearModel
All Implemented Interfaces:
NamedWriteable, Writeable, ToXContent, ToXContentFragment

public class HoltLinearModel extends MovAvgModel
Calculate a doubly exponential weighted moving average
  • Field Details

  • Constructor Details

    • HoltLinearModel

      public HoltLinearModel()
    • HoltLinearModel

      public HoltLinearModel(double alpha, double beta)
    • HoltLinearModel

      public HoltLinearModel(StreamInput in) throws IOException
      Read from a stream.
      Throws:
      IOException
  • Method Details

    • writeTo

      public void writeTo(StreamOutput out) throws IOException
      Description copied from class: MovAvgModel
      Write the model to the output stream
      Specified by:
      writeTo in interface Writeable
      Specified by:
      writeTo in class MovAvgModel
      Parameters:
      out - Output stream
      Throws:
      IOException
    • getWriteableName

      public String getWriteableName()
      Description copied from interface: NamedWriteable
      Returns the name of the writeable object
    • canBeMinimized

      public boolean canBeMinimized()
      Description copied from class: MovAvgModel
      Returns if the model can be cost minimized. Not all models have parameters which can be tuned / optimized.
      Specified by:
      canBeMinimized in class MovAvgModel
    • neighboringModel

      public MovAvgModel neighboringModel()
      Description copied from class: MovAvgModel
      Generates a "neighboring" model, where one of the tunable parameters has been randomly mutated within the allowed range. Used for minimization
      Specified by:
      neighboringModel in class MovAvgModel
    • clone

      public MovAvgModel clone()
      Description copied from class: MovAvgModel
      Clone the model, returning an exact copy
      Specified by:
      clone in class MovAvgModel
    • doPredict

      protected double[] doPredict(Collection<Double> values, int numPredictions)
      Predicts the next `n` values in the series, using the smoothing model to generate new values. Unlike the other moving averages, Holt-Linear has forecasting/prediction built into the algorithm. Prediction is more than simply adding the next prediction to the window and repeating. Holt-Linear will extrapolate into the future by applying the trend information to the smoothed data.
      Specified by:
      doPredict in class MovAvgModel
      Parameters:
      values - Collection of numerics to movingAvg, usually windowed
      numPredictions - Number of newly generated predictions to return
      Returns:
      Returns an array of doubles, since most smoothing methods operate on floating points
    • next

      public double next(Collection<Double> values)
      Description copied from class: MovAvgModel
      Returns the next value in the series, according to the underlying smoothing model
      Specified by:
      next in class MovAvgModel
      Parameters:
      values - Collection of numerics to movingAvg, usually windowed
      Returns:
      Returns a double, since most smoothing methods operate on floating points
    • next

      public double[] next(Collection<Double> values, int numForecasts)
      Calculate a Holt-Linear (doubly exponential weighted) moving average
      Parameters:
      values - Collection of values to calculate avg for
      numForecasts - number of forecasts into the future to return
      Returns:
      Returns a Double containing the moving avg for the window
    • toXContent

      public XContentBuilder toXContent(XContentBuilder builder, ToXContent.Params params) throws IOException
      Throws:
      IOException
    • hashCode

      public int hashCode()
      Specified by:
      hashCode in class MovAvgModel
    • equals

      public boolean equals(Object obj)
      Specified by:
      equals in class MovAvgModel