Class DataframeAnalysisBase.AbstractBuilder<BuilderT extends DataframeAnalysisBase.AbstractBuilder<BuilderT>>
- All Implemented Interfaces:
- WithJson<BuilderT>
- Direct Known Subclasses:
- DataframeAnalysisClassification.Builder,- DataframeAnalysisRegression.Builder
- Enclosing class:
- DataframeAnalysisBase
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionfinal BuilderTAdvanced configuration option.final BuilderTdependentVariable(String value) Required - Defines which field of the document is to be predicted.final BuilderTdownsampleFactor(Double value) Advanced configuration option.final BuilderTearlyStoppingEnabled(Boolean value) Advanced configuration option.final BuilderTAdvanced configuration option.final BuilderTetaGrowthRatePerTree(Double value) Advanced configuration option.final BuilderTfeatureBagFraction(Double value) Advanced configuration option.final BuilderTfeatureProcessors(DataframeAnalysisFeatureProcessor value, DataframeAnalysisFeatureProcessor... values) Advanced configuration option.final BuilderTfeatureProcessors(Function<DataframeAnalysisFeatureProcessor.Builder, ObjectBuilder<DataframeAnalysisFeatureProcessor>> fn) Advanced configuration option.final BuilderTAdvanced configuration option.final BuilderTAdvanced configuration option.final BuilderTAdvanced configuration option.final BuilderTAdvanced configuration option.final BuilderTAdvanced configuration option.final BuilderTAdvanced configuration option.final BuilderTpredictionFieldName(String value) Defines the name of the prediction field in the results.final BuilderTrandomizeSeed(Double value) Defines the seed for the random generator that is used to pick training data.protected abstract BuilderTself()final BuilderTsoftTreeDepthLimit(Integer value) Advanced configuration option.final BuilderTsoftTreeDepthTolerance(Double value) Advanced configuration option.final BuilderTtrainingPercent(String value) Defines what percentage of the eligible documents that will be used for training.Methods inherited from class co.elastic.clients.util.WithJsonObjectBuilderBasewithJsonMethods inherited from class co.elastic.clients.util.ObjectBuilderBase_checkSingleUse, _listAdd, _listAddAll, _mapPut, _mapPutAll
- 
Constructor Details- 
AbstractBuilderpublic AbstractBuilder()
 
- 
- 
Method Details- 
alphaAdvanced configuration option. Machine learning uses loss guided tree growing, which means that the decision trees grow where the regularized loss decreases most quickly. This parameter affects loss calculations by acting as a multiplier of the tree depth. Higher alpha values result in shallower trees and faster training times. By default, this value is calculated during hyperparameter optimization. It must be greater than or equal to zero.API name: alpha
- 
dependentVariableRequired - Defines which field of the document is to be predicted. It must match one of the fields in the index being used to train. If this field is missing from a document, then that document will not be used for training, but a prediction with the trained model will be generated for it. It is also known as continuous target variable. For classification analysis, the data type of the field must be numeric (integer,short,long,byte), categorical (iporkeyword), orboolean. There must be no more than 30 different values in this field. For regression analysis, the data type of the field must be numeric.API name: dependent_variable
- 
downsampleFactorAdvanced configuration option. Controls the fraction of data that is used to compute the derivatives of the loss function for tree training. A small value results in the use of a small fraction of the data. If this value is set to be less than 1, accuracy typically improves. However, too small a value may result in poor convergence for the ensemble and so require more trees. By default, this value is calculated during hyperparameter optimization. It must be greater than zero and less than or equal to 1.API name: downsample_factor
- 
earlyStoppingEnabledAdvanced configuration option. Specifies whether the training process should finish if it is not finding any better performing models. If disabled, the training process can take significantly longer and the chance of finding a better performing model is unremarkable.API name: early_stopping_enabled
- 
etaAdvanced configuration option. The shrinkage applied to the weights. Smaller values result in larger forests which have a better generalization error. However, larger forests cause slower training. By default, this value is calculated during hyperparameter optimization. It must be a value between 0.001 and 1.API name: eta
- 
etaGrowthRatePerTreeAdvanced configuration option. Specifies the rate at whichetaincreases for each new tree that is added to the forest. For example, a rate of 1.05 increasesetaby 5% for each extra tree. By default, this value is calculated during hyperparameter optimization. It must be between 0.5 and 2.API name: eta_growth_rate_per_tree
- 
featureBagFractionAdvanced configuration option. Defines the fraction of features that will be used when selecting a random bag for each candidate split. By default, this value is calculated during hyperparameter optimization.API name: feature_bag_fraction
- 
featureProcessorsAdvanced configuration option. A collection of feature preprocessors that modify one or more included fields. The analysis uses the resulting one or more features instead of the original document field. However, these features are ephemeral; they are not stored in the destination index. Multiplefeature_processorsentries can refer to the same document fields. Automatic categorical feature encoding still occurs for the fields that are unprocessed by a custom processor or that have categorical values. Use this property only if you want to override the automatic feature encoding of the specified fields.API name: feature_processorsAdds all elements of listtofeatureProcessors.
- 
featureProcessorspublic final BuilderT featureProcessors(DataframeAnalysisFeatureProcessor value, DataframeAnalysisFeatureProcessor... values) Advanced configuration option. A collection of feature preprocessors that modify one or more included fields. The analysis uses the resulting one or more features instead of the original document field. However, these features are ephemeral; they are not stored in the destination index. Multiplefeature_processorsentries can refer to the same document fields. Automatic categorical feature encoding still occurs for the fields that are unprocessed by a custom processor or that have categorical values. Use this property only if you want to override the automatic feature encoding of the specified fields.API name: feature_processorsAdds one or more values to featureProcessors.
- 
featureProcessorspublic final BuilderT featureProcessors(Function<DataframeAnalysisFeatureProcessor.Builder, ObjectBuilder<DataframeAnalysisFeatureProcessor>> fn) Advanced configuration option. A collection of feature preprocessors that modify one or more included fields. The analysis uses the resulting one or more features instead of the original document field. However, these features are ephemeral; they are not stored in the destination index. Multiplefeature_processorsentries can refer to the same document fields. Automatic categorical feature encoding still occurs for the fields that are unprocessed by a custom processor or that have categorical values. Use this property only if you want to override the automatic feature encoding of the specified fields.API name: feature_processorsAdds a value to featureProcessorsusing a builder lambda.
- 
gammaAdvanced configuration option. Regularization parameter to prevent overfitting on the training data set. Multiplies a linear penalty associated with the size of individual trees in the forest. A high gamma value causes training to prefer small trees. A small gamma value results in larger individual trees and slower training. By default, this value is calculated during hyperparameter optimization. It must be a nonnegative value.API name: gamma
- 
lambdaAdvanced configuration option. Regularization parameter to prevent overfitting on the training data set. Multiplies an L2 regularization term which applies to leaf weights of the individual trees in the forest. A high lambda value causes training to favor small leaf weights. This behavior makes the prediction function smoother at the expense of potentially not being able to capture relevant relationships between the features and the dependent variable. A small lambda value results in large individual trees and slower training. By default, this value is calculated during hyperparameter optimization. It must be a nonnegative value.API name: lambda
- 
maxOptimizationRoundsPerHyperparameterAdvanced configuration option. A multiplier responsible for determining the maximum number of hyperparameter optimization steps in the Bayesian optimization procedure. The maximum number of steps is determined based on the number of undefined hyperparameters times the maximum optimization rounds per hyperparameter. By default, this value is calculated during hyperparameter optimization.API name: max_optimization_rounds_per_hyperparameter
- 
maxTreesAdvanced configuration option. Defines the maximum number of decision trees in the forest. The maximum value is 2000. By default, this value is calculated during hyperparameter optimization.API name: max_trees
- 
numTopFeatureImportanceValuesAdvanced configuration option. Specifies the maximum number of feature importance values per document to return. By default, no feature importance calculation occurs.API name: num_top_feature_importance_values
- 
predictionFieldNameDefines the name of the prediction field in the results. Defaults to<dependent_variable>_prediction.API name: prediction_field_name
- 
randomizeSeedDefines the seed for the random generator that is used to pick training data. By default, it is randomly generated. Set it to a specific value to use the same training data each time you start a job (assuming other related parameters such assourceandanalyzed_fieldsare the same).API name: randomize_seed
- 
softTreeDepthLimitAdvanced configuration option. Machine learning uses loss guided tree growing, which means that the decision trees grow where the regularized loss decreases most quickly. This soft limit combines with thesoft_tree_depth_toleranceto penalize trees that exceed the specified depth; the regularized loss increases quickly beyond this depth. By default, this value is calculated during hyperparameter optimization. It must be greater than or equal to 0.API name: soft_tree_depth_limit
- 
softTreeDepthToleranceAdvanced configuration option. This option controls how quickly the regularized loss increases when the tree depth exceedssoft_tree_depth_limit. By default, this value is calculated during hyperparameter optimization. It must be greater than or equal to 0.01.API name: soft_tree_depth_tolerance
- 
trainingPercentDefines what percentage of the eligible documents that will be used for training. Documents that are ignored by the analysis (for example those that contain arrays with more than one value) won’t be included in the calculation for used percentage.API name: training_percent
- 
self- Specified by:
- selfin class- WithJsonObjectBuilderBase<BuilderT extends DataframeAnalysisBase.AbstractBuilder<BuilderT>>
 
 
-